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Abstract

The unsteady natural convection flow from a horizontal cylindrical annulus filled with a non-Darcy porous medium has been studied.
The unsteadiness in the problem arises due to the impulsive change in the wall temperature of the outer cylinder. The Navier–Stokes
equations along with the energy equation governing the unsteady natural convection flow have been solved by the finite-volume method.
The effect of time variation on the heat transfer is more pronounced only in a small time interval immediately after the start of the impul-
sive motion and the steady state is reached after certain time. The results show that the annulus completely filled with a porous medium
has the best insulating effectiveness. Convection in the horizontal annulus is confined mostly at top and bottom regions. Hence, only
these regions should be insulated. In case of annulus partially filled with a porous material, insulating the region near the outer cylinder
is more effective than insulating the region near the inner cylinder. The effect of Darcy number on the heat transfer is more pronounced
than that of the Grashof number.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the design of hot-water heating system is
based on longitudinal prestressing to limit or prevent longi-
tudinal motion of buried pipe. This eliminates the use of
expansion joints or loops. Such a system is known as pipe
in pipe system which permits an extension of the allowable
temperature range. The system consists of the conveying
pipe and the casing pipe which gives the counter force for
prestressing. The annulus between the two pipes can be
filled completely or partially by an insulating material.
The resulting problem can be regarded as a conjugate nat-
ural convection problem in a concentric annulus filled with
saturated porous medium.

Kuehn and Goldstein [1] have carried out the experi-
mental as well as numerical study of natural convection
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from a horizontal cylindrical annulli. Yoo [2] has studied
the natural convection flow in a narrow horizontal cylindri-
cal annulus for small Prandtl number. The above problem
with porous medium has been studied by several investiga-
tors [3–10]. Recently, Aldoss et al. [11] have studied the
steady natural convection from a horizontal annulus filled
partially or totally with saturated porous medium where
the effects of different physical parameters have been
examined.

The aim of this study is to consider the unsteady natural
convection flow from a horizontal cylindrical annulli filled
partially or completely with fluid saturated porous med-
ium. The flow is initially assumed to be steady, but at time
t� > 0 it becomes unsteady due to the sudden change in the
wall temperature of the outer cylinder. This causes
unsteadiness in the flow field. The Navier–Stokes equations
and the energy equation governing the unsteady natural
convection flow have been solved by the finite-volume
method [12–14]. The steady state results have been
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Nomenclature

C dimensionless constant
Da Darcy number
F Forchhiemer coefficient
g acceleration due to gravity (m/s2)
Gr Grashof number
K thermal conductivity (W/(m K))
K� permeability (m2)
Nu Nusselt number
Nucond Nusselt number for pure conduction state
Nui average Nusselt number at the inner cylinder
Nuo average Nusselt number at the outer cylinder
Nu overall Nusselt number
p dimensionless pressure
p� pressure (Pa)
Pr Prandtl number
r� radial coordinate (m)
r dimensionless radial distance
r�i ; r

�
o radii of inner and outer cylinders, respectively

(m)
ri; ro dimensionless radii of inner and outer cylinders,

respectively
r�inf interface radius between porous medium and

clear fluid (m)
rinf dimensionless interface radius
t� time (s)
t dimensionless time
T temperature (K)

T i; T o temperature of the inner and outer cylinders,
respectively (K)

u�; v� velocity components along r� and / directions,
respectively (m/s)

u; v dimensionless velocity components

Greek symbols

a thermal diffusivity ðm2=sÞ
b volumetric coefficient of thermal expansion

(K�1)
� dimensionless porosity
�1 dimensionless constant denoting the change in

the wall temperature
h dimensionless temperature
l dynamic viscosity (N s m�2)
m kinematic viscosity (m2/s)
q density (kg/m3)
/ tangential or circumferential direction

Subscripts

f fluid
i inner
inf interface
o outer
p porous medium
1 initial condition
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compared with those of Aldoss et al. [11]. The present
results will be useful in the design of heating system, where
the wall temperature is subjected to sudden change.
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Fig. 1. Comparison of the local Nusselt number at the outer cylinder Nuo

and at the interface of the porous medium and the clear fluid Nuinf for the
steady flow.
2. Analysis

Let us consider an annulus bounded by two horizontal
concentric cylinders of radii r�i and r�o (see inset of Fig. 1)
which is filled partially or totally with non-Darcy fluid sat-
urated porous medium. Initially ðt� ¼ 0Þ, the surface tem-
peratures of the inner and outer cylinders are maintained
at T i and T o, respectively, where T o > T i. This temperature
difference gives rise to buoyancy force. At time t� > 0, the
temperature of the outer cylinder T o is suddenly changed
which causes unsteadiness in the problem. The fluid is
assumed to be incompressible viscous and laminar with
constant properties except the density. The thermophysical
properties of the fluid and the medium are homogeneous
and isotropic. The fluid and solid particles are in local equi-
librium which implies equal local temperatures. Inset of
Fig. 1 shows the inner layer case where the porous layer
is represented by the shaded portion. A cylindrical polar
coordinate system ðr;/Þ is used. Here, we have considered
four cases. Case 1: The annulus is filled with a clear fluid,
case 2: the annulus is completely filled with a porous med-
ium, case 3: the annulus is partially filled with a porous
layer adjacent to the inner cylinder and case 4 which is
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the same as case 3 except that the porous medium is near to
the outer cylinder. Under the above assumptions, the
Navier–Stokes equations and the energy equation govern-
ing the unsteady natural convection flow based on conser-
vation of mass, momentum and energy in dimensionless
form are given by [6,8,10,11]

o

or
ðruÞ þ ov

o/
¼ 0; ð1Þ

��2 �
ou
ot
þ u

ou
or
þ v

r
ou
o/
� v2

r

� �
¼ Grh cos /� op

or

þ ��1 o2u
or2
þ 1

r
ou
or
� u

r2
þ 1

r2

o2u

o/2
� 2

r2

ov
o/

� �

� C½Da�1 þ Da�1=2FQ�u; ð2Þ

��2 �
ov
ot
þ u

ov
or
þ v

r
ov
o/
þ uv

r

� �
¼ �Grh sin /� 1

r
op
o/

þ ��1 o2v
or2
þ 1

r
ov
or
� v

r2
þ 1

r2

o2v

o/2
þ 2

r2

ou
o/

� �

� C½Da�1 þ FDa�1=2Q�v; ð3Þ
oh
ot
þ u

oh
or
þ v

r
oh
o/
¼ Pr�1 o2h

or2
þ 1

r
o

o/
r�1 oh

o/

� �� �
; ð4Þ

where

r ¼ r�=R; u ¼ u�=uo; v ¼ v�=uo; p ¼ p�=qu2
o;

rinf ¼ r�inf=R; h ¼ ðT � T iÞ=ðT o � T iÞ; T o > T i;

Gr ¼ gbðT o � T iÞR3=m2; Da ¼ K�=R2;

Pr ¼ m=a; t ¼ ðm=R2Þt�;
R ¼ r�o � r�i ; Q ¼ ðu2 þ v2Þ1=2

:

ð5Þ

The initial conditions (i.e., at time t ¼ 0) are given by

uðr;/; 0Þ ¼ u1ðr;/Þ; vðr;/; 0Þ ¼ v1ðr;/Þ; hðr;/; 0Þ
¼ h1ðr;/Þ; ð6Þ

and the boundary conditions can be expressed as:

For t P 0; / ¼ 0 and p; ri < r < ro;

ou=o/ ¼ ov=o/ ¼ oh=o/ ¼ 0;

for t P 0; r ¼ ri; 0 < / < p; u ¼ v ¼ h ¼ 0;

for t P 0; r ¼ ro; 0 < / < p; u ¼ v ¼ 0;

h ¼ 1 for t ¼ 0; h ¼ 1þ �1 for t > 0;

for t P 0; r ¼ rinf ; 0 < / < p; uf ¼ up;

vf ¼ vp; hf ¼ hp;

ðov=orÞf ¼ ðlp=lfÞðov=orÞp;
ðoh=orÞf ¼ ðKp=K fÞðoh=orÞp: ð7Þ

The initial conditions ðu1ðr;/Þ; v1ðr;/Þ and h1ðr;/Þ) are
given by the steady state equations which are obtained
from Eqs. (1)–(4) by putting t ¼ �1 ¼ ou=ot ¼ ov=ot ¼
oh=ot ¼ 0.

For applying the above equations in the fluid region,
� ¼ 1 and C ¼ 0 and for the porous region C ¼ 1. To
reduce the complexity of the problem, we have taken the
conductivity and viscosity ratios ðKp=K f ; lp=lfÞ to be equal
to 1.

The quantities of physical interest are the local and aver-
age Nusselt numbers at the inner and outer cylinders as
well as the overall Nusselt number which are defined by

Nui ¼ ðr�oT=or�Þr�¼r�
i
=ðT o � T iÞ ¼ ðroh=orÞr¼ri

;

Nuo ¼ �ðr�oT =or�Þr�¼r�o
=ðT o � T iÞ ¼ �ðroh=orÞr¼ro

: ð8aÞ

Now using these equations, the average Nusselt num-
bers are calculated for each cylinder and they are given by

Nui ¼
1

p

Z p

0

Nuid/;Nuo ¼
1

p

Z p

0

Nuod/: ð8bÞ

The overall Nusselt number Nu is expressed as

Nu ¼ ðNui þ NuoÞ=2: ð8cÞ
The expressions for the local Nusselt numbers at the

inner and outer cylinders are essentially same as those of
Yoo [2] and Kimura and Pop [6] except that they [2,6] have
divided the expressions for the local Nusselt numbers Nui

and Nuo by Nucond ð¼ 1= lnðro=riÞÞ. The local Nusselt num-
bers Nui and Nuo are also same as those of Aldoss et al. [11]
except that they have used ðT b � T iÞ in the expressions for
Nui and Nuo instead of ðT o � T iÞ, where T b is the bulk
temperature.

3. Numerical procedure

Eqs. (1)–(4) under initial and boundary conditions (6)
and (7) have been solved by using a finite-volume method.
The SIMPLE method of Patanker and Spalding [12] has
been used to couple the momentum and continuity equa-
tions in a uniform staggered grid. In order to minimize
numerical diffusion, the convective terms, in the momen-
tum and energy equations have been discretized using
QUICK scheme of Leonard [13] as modified by Hayase
et al. [14]. The diffusion terms have been discretized using
central difference scheme, whereas a second-order accurate
implicit scheme is used for the transient terms. The SIM-
PLE scheme mentioned above is employed for calculating
pressure. Here the under-relaxation factors with values of
0.5, 0.5, 0.7 and 0.35 are used for u; v; h and p, respectively.

Convergence within each time step is determined
through the sum of the absolute relative difference for each
dependent variable in the entire flow field

X
i;j

j Snþ1
i;j � Sn

i;j j
j Sn

i;j j
6 10�5; ð9Þ

where S represents the dependent variables u; v and h, the
subscripts i and j refer to the space coordinates ðr;/Þ
and the superscript n refers to iterative number. Steady
state is reached when

P
i;j j Smþ1

i;j � Sm
i;j j6 10�5, where m re-

fers to the time iteration. Time steps from 10�3 to 10�5 have
been used to insure good accuracy in time. Here Mr ¼ 0:01
and M/ ¼ 1� are used. A finer grid is used near the walls of
the cylinder and at the interface of porous/fluid layer. The
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results presented here are independent of grid size at least
up to three decimal place.

In order to validate our results, we have compared our
steady state results for the local Nusselt numbers at the sur-
face of the outer cylinder ðNuoÞ and at the interface of the
clear fluid and porous medium ðNuinfÞ for Gr ¼ 3:7� 103

and 5:4� 103, � ¼ F ¼ 1, Da ¼ 2� 10�4, rinf ¼ 1:7, Pr ¼
0:7. The results are found to be in very good agreement.
The comparison is shown in Fig. 1.
4. Results and discussion

Here we have considered the effects of Grashof number
Gr, Darcy number Da and the interface of the porous med-
ium and clear fluid rinf on the Nusselt numbers. Also we
have taken the porous medium to be polyurethane foam.
The Prandtl number for this porous medium saturated with
a gas at near standard conditions is 0.5 [5,15]. Hence, we
have not shown the effect of the variation of Pr on the Nus-
selt number here. However, the Nusselt number increases
with Pr.

The variation of the local Nusselt number at the outer
cylinder Nuo with time tð0 6 t 6 5Þ, when the wall temper-
ature of the outer cylinder is suddenly heated or cooled
ð�1 ¼ �0:2Þ, for Gr ¼ 3:7� 103 and 5:4� 103,
Da ¼ 2� 10�4, 2� 10�2, � ¼ 0:9, F ¼ 0:55, rinf ¼ 1:7,
/ ¼ 80�, Pr ¼ 0:5 is shown in Fig. 2. Since significant
changes take place in a small time interval ð0 6 t 6 0:5Þ,
it is also presented in the inset. When the wall temperature
of the outer cylinder is suddenly cooled ð�1 ¼ �0:2Þ, there
is a change in the direction of the heat transfer at the sur-
face in a small time interval ð0 < t < 0:07Þ. However, when
t
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Fig. 2. Variation of the local Nusselt number at the outer cylinder Nuo

with time t when the wall temperature of the outer cylinder is suddenly
heated or cooled.
the wall temperature is suddenly increased ð�1 ¼ 0:2Þ, no
such phenomenon is observed. The reason for this trend
can be explained as follows. At time t ¼ 0, the temperature
of the outer cylinder is higher than that of the fluid near the
wall. Hence the heat is transferred from the wall to the fluid
(i.e., ðoh=orÞr¼1 < 0Þ. At time t > 0, the wall is suddenly
cooled. Consequently, in a certain small time interval, the
temperature of the wall becomes less than that of the fluid
near the wall which causes the heat to flow from the fluid of
the wall (i.e., ðoh=orÞr¼1 > 0Þ. When the wall is suddenly
heated ð�1 ¼ 0:2Þ, no such phenomenon is observed as is
evident from the inset of Fig. 2, because the temperature
of the wall is always higher than that of the surrounding
fluid. The Nusselt number Nuo tends to the steady state
for t > 4 in a non-monotonic fashion as can be seen from
the inset of Fig. 2. Also, the change in the Nusselt number
is more pronounced in a small time interval. For a fixed
time t > 0, the Nusselt number Nu increases with the Gras-
hof number Gr and the Darcy number Da. Since the posi-
tive buoyancy force ðGr > 0Þ acts like a favourable
pressure gradient which accelerated the fluid and reduces
both the momentum and thermal boundary layer thick-
ness, the heat transfer is increased. The increase in the
Darcy number Da implies less resistance to the fluid motion
which results in thinner boundary layer. Hence the Nusselt
number increases with increasing Da.

Fig. 3 displays the variation of the local Nusselt number
at the interface of the porous medium and the clear fluid
Nuinf (case 3) with time t for Gr ¼ 3:7� 103 and
5:4� 103, Da ¼ 2� 10�4 and 2� 10�2, F ¼ 0:55,
rinf ¼ 1:7, � ¼ 0:9, / ¼ 80�, �1 ¼ �0:2, Pr ¼ 0:5. In this
case, the change with time is less pronounced as compared
to Nuo, because the sudden change in the wall temperature
t
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of the outer cylinder has an indirect effect on Nuinf . Further,
it increases or decreases with time monotonically. As
explained earlier, it increases when the wall is heated, but
decreases when the wall is cooled. For a fixed �1, Nuinf

increases with Grashof and Darcy numbers. The reason
for this behaviour has been explained earlier.

Figs. 4 and 5 display the variation of the local Nusselt
number at the outer cylinder Nuo and at the interface of
the porous medium and clear fluid Nuinf (case 3) with the
angular location /ð/ ¼ 0 is the angular position at the
top location of the cylinder and / ¼ 180� is the location
of the bottom of the cylinder) when Gr ¼ 5:4� 103,
Da ¼ 2� 10�2, rinf ¼ 1:3, 1.7 and 2.0, � ¼ 0:9, F ¼ 0:55,
t ¼ 4, �1 ¼ �0:2, Pr ¼ 0:5. For both wall heating and cool-
ing ð�1 ¼ �0:2Þ;Nuo and Nuinf decrease with increasing
radius ratio rinf (rinf ¼ 2 represents the case of completely
filled annulus with porous material (case 2)). This result
is important, because it shows that the thicker porous layer
has better insulating effect. For a fixed rinf ;Nuo decreases
with increasing /, but Nuinf increases.

Figs. 6 and 7 show the variation of the final steady state
ðt!1Þ average Nusselt numbers for both inner and outer
cylinders ðNui;NuoÞ with the Grashof number Gr and the
Darcy number Da, respectively, for case 2 (i.e., when the
annulus is completely filled with the porous insulating
material) when � ¼ 0:9, F ¼ 0:55, Pr ¼ 0:5, t!1,
� ¼ �0:2. It is observed that Nui and Nuo in both cases
are nearly same which justifies the assumption of the ther-
mal equilibrium of the system i.e., the total heat input rate
is the same as the total heat output rate. Similar trend
holds good for other cases also, but they are not presented
here.
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Fig. 8 presents the effect of the Grahsof number Gr on
the overall Nusselt number Nu for the four cases considered
here when Da ¼ 2� 10�2, F ¼ 0:55, � ¼ 0:9, t!1,
�1 ¼ �0:2, Pr ¼ 0:5. The overall Nusselt number Nu for
the case 2 (i.e., when the annulus is completely filled with
a porous medium) is less than the other three cases, which
indicates that this system is most effective as an insulating
system. The next effective insulating system is represented
by case 4 where the porous layer is adjacent to the outer
cylinder. Case 3 comes next to case 4 and case 1 is the least
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efficient system. The above results hold good for all Gras-
hof numbers > 103. The above behaviour is attributed to
the fact that the porous layer suppresses the fluid circula-
tion which leads to reduction in the convective heat trans-
fer. Similar results have been obtained by Aldoss et al. [11]
for the steady case.

The effect of the Darcy number Da on the overall Nus-
selt number Nu for cases 2, 3 4 and Gr ¼ 5:4� 103,
F ¼ 0:55, � ¼ 0:9, t!1, �1 ¼ �0:2, Pr ¼ 0:5 is shown
in Fig. 9. For a fixed Da; Nu for case 2 is less than that
of other cases which implies that the annulus completely
filled with the porous material is most efficient insulating
system and case 4 and case 3 come next in that order. The
effect of the Darcy number on Nu is much more pro-
nounced than that of the Grashof number Gr (see
Fig. 8). Also as Da increases, the difference between the
values of the overall Nusselt number Nu for cases 2, 3,
and 4 decreases. As Da!1, all values should attain
the clear fluid limit.

5. Conclusions

When the temperature of the outer cylinder is suddenly
lowered, there is a change in the direction of the heat trans-
fer in a small time interval immediately after the impulsive
reduction of the wall temperature. No such phenomenon is
observed when the wall temperature of the outer cylinder is
suddenly increased. The final steady state is reached after
certain instant of time. The heat transfer is mostly confined
at the top and bottom regions of the annulus. Hence, only
these regions could be insulated. Annulus completely filled
with porous material has the best insulating effect. If the
annulus is partly filled with a porous material, then insulat-
ing the region near the outer cylinder is more effective than
the region near the inner cylinder. The effect of the Darcy
number on the average Nusselt Number is more pro-
nounced than that of the Grashof number. The local Nus-
selt number at the outer cylinder increases with Grashof
and Darcy numbers, but it decreases with increasing angu-
lar distance ð/Þ. For the steady state case ðt!1Þ, the
average Nusselt numbers for the inner and outer cylinders
are almost same which justifies the assumption of the ther-
mal equilibrium of the system.
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